Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Polymorphism in molecular crystals influences their properties and performance. Crystal structure prediction (CSP) can help explore the crystal structure landscape and discover potentially stable polymorphs computationally. We present a new version of the Genarris open-source code, which generates random molecular crystal structures in all space groups and applies physical constraints on intermolecular distances. The main new feature in Genarris 3.0 is the ``Rigid Press algorithm, which uses a regularized hard-sphere potential to compress the unit cell and achieve a maximally close-packed structure based on purely geometric considerations without performing any energy evaluations. In addition, Genarris 3.0 is interfaced with machine-learned interatomic potentials (MLIPs) to accelerate the exploration of the potential energy landscape. We present a new clustering and down-selection workflow that employs the MACE-OFF23(L) MLIPs to perform geometry optimization and energy ranking in the early stages. We use Genarris 3.0 to successfully predict the structure of six targets: aspirin, Target I and Target XXII from previous CSP blind tests, and the energetic materials HMX, CL-20, and DNI. We further analyze the performance of MACE-OFF23(L) compared to dispersion-inclusive density functional theory (DFT) for geometry relaxation and energy ranking. We find significant variability in the performance of MACE-OFF23(L) across chemically diverse targets with particularly poor performance for energetic materials, which is mitigated by our clustering and down-selection procedure. Genarris 3.0 can thus be used effectively to perform CSP and to generate molecular crystal datasets for training ML models.more » « lessFree, publicly-accessible full text available June 30, 2026
- 
            Abstract This Roadmap article provides a succinct, comprehensive overview of the state of electronic structure (ES) methods and software for molecular and materials simulations. Seventeen distinct sections collect insights by 51 leading scientists in the field. Each contribution addresses the status of a particular area, as well as current challenges and anticipated future advances, with a particular eye towards software related aspects and providing key references for further reading. Foundational sections cover density functional theory and its implementation in real-world simulation frameworks, Green’s function based many-body perturbation theory, wave-function based and stochastic ES approaches, relativistic effects and semiempirical ES theory approaches. Subsequent sections cover nuclear quantum effects, real-time propagation of the ES, challenges for computational spectroscopy simulations, and exploration of complex potential energy surfaces. The final sections summarize practical aspects, including computational workflows for complex simulation tasks, the impact of current and future high-performance computing architectures, software engineering practices, education and training to maintain and broaden the community, as well as the status of and needs for ES based modeling from the vantage point of industry environments. Overall, the field of ES software and method development continues to unlock immense opportunities for future scientific discovery, based on the growing ability of computations to reveal complex phenomena, processes and properties that are determined by the make-up of matter at the atomic scale, with high precision.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
